Incompatibility between a pair of residues from the pre-M1 linker and Cys-loop blocks surface expression of the glycine receptor.
نویسندگان
چکیده
Regulation of cell membrane excitability can be achieved either by modulating the functional properties of cell membrane-expressed single channels or by varying the number of expressed channels. Whereas the structural basis underlying single channel properties has been intensively studied, the structural basis contributing to surface expression is less well characterized. Here we demonstrate that homologous substitution of the pre-M1 linker from the β subunit prevents surface expression of the α1 glycine receptor chloride channel. By investigating a series of chimeras comprising α1 and β subunits, we hypothesized that this effect was due to incompatibility between a pair of positively charged residues, which lie in close proximity to each other in the tertiary structure, from the pre-M1 linker and Cys-loop. Abolishing either positive charge restored surface expression. We propose that incompatibility (electrostatic repulsion) between this pair of residues misfolds the glycine receptor, and in consequence, the protein is retained in the cytoplasm and prevented from surface expression by the quality control machinery. This hypothesis suggests a novel mechanism, i.e. residue incompatibility, for explaining the mutation-induced reduction in channel surface expression, often present in the cases of hereditary hyperekplexia.
منابع مشابه
Mutations causing congenital myasthenia reveal principal coupling pathway in the acetylcholine receptor ε-subunit.
We identify 2 homozygous mutations in the ε-subunit of the muscle acetylcholine receptor (AChR) in 3 patients with severe congenital myasthenia: εR218W in the pre-M1 region in 2 patients and εE184K in the β8-β9 linker in 1 patient. Arg218 is conserved in all eukaryotic members of the Cys-loop receptor superfamily, while Glu184 is conserved in the α-, δ-, and ε-subunits of AChRs from all species...
متن کاملLigand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain.
Understanding the activation mechanism of Cys loop ion channel receptors is key to understanding their physiological and pharmacological properties under normal and pathological conditions. The ligand-binding domains of these receptors comprise inner and outer beta-sheets and structural studies indicate that channel opening is accompanied by conformational rearrangements in both beta-sheets. In...
متن کاملAcetylcholine Receptor Gating at Extracellular Transmembrane Domain Interface: the “Pre-M1” Linker
Charged residues in the beta10-M1 linker region ("pre-M1") are important in the expression and function of neuromuscular acetylcholine receptors (AChRs). The perturbation of a salt bridge between pre-M1 residue R209 and loop 2 residue E45 has been proposed as being a principle event in the AChR gating conformational "wave." We examined the effects of mutations to all five residues in pre-M1 (po...
متن کاملActivation and desensitization induce distinct conformational changes at the extracellular-transmembrane domain interface of the glycine receptor.
Most ligand-gated channels exhibit desensitization, which is the progressive fading of ionic current in the prolonged presence of agonist. This process involves conformational changes that close the channel despite continued agonist binding. Despite the physiological and pathological importance of desensitization, little is known about the conformational changes that underlie this process in an...
متن کاملDisturbances of Ligand Potency and Enhanced Degradation of the Human Glycine Receptor at Affected Positions G160 and T162 Originally Identified in Patients Suffering from Hyperekplexia
Ligand-binding of Cys-loop receptors is determined by N-terminal extracellular loop structures from the plus as well as from the minus side of two adjacent subunits in the pentameric receptor complex. An aromatic residue in loop B of the glycine receptor (GlyR) undergoes direct interaction with the incoming ligand via a cation-π interaction. Recently, we showed that mutated residues in loop B i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 287 10 شماره
صفحات -
تاریخ انتشار 2012